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Quantum Secure Group 
Communication
Zheng-Hong Li1, M. Suhail Zubairy2 & M. Al-Amri2,3,4

We propose a quantum secure group communication protocol for the purpose of sharing the same 
message among multiple authorized users. Our protocol can remove the need for key management 
that is needed for the quantum network built on quantum key distribution. Comparing with the secure 
quantum network based on BB84, we show our protocol is more efficient and securer. Particularly, 
in the security analysis, we introduce a new way of attack, i.e., the counterfactual quantum attack, 
which can steal information by “invisible” photons. This invisible photon can reveal a single-photon 
detector in the photon path without triggering the detector. Moreover, the photon can identify phase 
operations applied to itself, thereby stealing information. To defeat this counterfactual quantum 
attack, we propose a quantum multi-user authorization system. It allows us to precisely control the 
communication time so that the attack can not be completed in time.

An arbitrary unknown quantum state can not be cloned. The statement known as quantum no-cloning theo-
rem1 indicates a robust way to secure communication. Based on this, the first quantum key distribution protocol 
(QKD), BB842,3, is published in 1984. It allows two communicators to generate a unique key to encrypt messages. 
After that, during three decades of intense research, a mass of quantum secure communication protocols have 
been designed and published. They include not only QKD protocols4,5, but also direct secure quantum communi-
cation protocols6–8, quantum public-key cryptography9–12 and so on13–17. In addition, aimed at practical applica-
tion, techniques such as decoy states14,18–20, device independent QKD21–24 are also studied.

No doubt, to achieve a quantum secure network is one of the most important goals of all of the above studies25, 
where QKD is the most promising protocol for application. However, considering network environment, QKD 
has disadvantages. For security reasons, the distributed key in QKD is disposable, which is called one time pad. 
This brings in the key management problem when more than two communicators are involved9. Since all keys 
are used once and discarded, it is meaningless to share them among communicators for further use. When the 
number of communicators increases, a mass of keys need to be managed, which takes lots of resources9.

A solution to the key management problem in quantum secure network is quantum public-key cryptogra-
phy9–12, which utilizes quantum one-way function26,27. Generally speaking, there is a public key that is only capa-
ble of encoding message, while there is another private key, which is just for decoding message. As a result, a 
receiver who holds the private key can collect information from a large number of senders. Thus, unidirectional 
group to point communication is achieved.

In addition to quantum public-key cryptography, there are multi-party quantum cryptography protocols28–32 
based on multi-party entanglement states. Those protocols require particles held by different communicators are 
entangled before the communication. Then, after the communicators perform appropriate measurements (dis-
entanglement process) and negotiate with each other, a shared key can be determined.

In this paper, however, we solve the key management problem by another way. Without utilizing multi-party 
entanglement states, we create and share a key among more than two users, so that all authorized communicators 
can use the shared key to encode and decode information. More specifically, this shared key is pre-selected by Bob 
himself (the key initiator). The key generation process is irrelevant to other communicators (participants) and 
can be achieved by a quantum random number generator33. After that, the key is sent directly and independently 
to other communicators. Our protocol is based on the Ping-Pong protocol6, which is one kind of direct secure 
quantum communication protocol between two communicators. In the Ping-Pong protocol, Alice (the message 
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receiver) prepares two entangled photons and delivers one of them to Bob (the message sender). At Bob’s end, he 
can either measure Alice’s photon to check the security (control mode) or operate the photon phase to encode 
information (message mode). In message mode, Alice collects the operated photon and performs a joint meas-
urement on two photons. By doing so, Alice gets Bob’s information directly. Apparently, Bob can operate many 
incoming photons from different communicators simultaneously so that he can broadcast the message to all 
communicators. However, the question to ask is whether the shared key is secure? In the Ping-Pong protocol, 
the communication security is guaranteed by random check of the entanglement between two photons. This 
strategy has been discussed and strengthened34. In this paper, we do not intend to repeat the discussion but focus 
on a new attack, the counterfactual quantum attack, which is based on counterfactual quantum communication 
protocols35–40. In ref.37, it shows that a phase operation can be traced by an “invisible” photon. More importantly, 
this “invisible” photon can reveal a single-photon detector in the photon path without alerting the communi-
cation system35. Based on the above results, we show that it is possible for an eavesdropper, Eve, to steal Bob’s 
information without being exposed in the Ping-Pong protocol. To defeat this counterfactual quantum attack, 
we propose a quantum multi-user authorization system. It works because of spatial relativity41 and the fact that 
photon paths in a Michelson interferometer are untraceable. With the quantum multi-user authorization system, 
we can achieve a quantum secure group communication that allows secure messages to be shared among multiple 
authorized users.

In the following, there are five sections. In Section II, we present a detailed setup of our protocol. In Section 
III, we introduce the counterfactual quantum attack. In Section IV, we elaborate on our security strategy, 
which can verify the identities of all communicators. In the same section, we summarize the procedures of our 
secure group communication protocol. In section V, we compare our group communication protocol with that 
based on BB84. We show that our protocol is more efficient and securer since it can deliver a pre-prepared key 
securely and directly. In Section VI, we present concluding remarks. In addition, we have three supplementa-
ries. In Supplementary I, we discuss the influence of implement imperfection on the group communication. In 
Supplementary II, we discuss the influence of the imperfection of the transmission channel. In Supplementary III, 
we show that successful single-cycle counterfactual quantum attack does not exist.

The proposed setup of a quantum secure group communication
The proposed setup of a quantum secure group communication is sketched in Fig. 1. Basically, Bob is the key 
initiator. He continuously broadcasts his signals, which are determined only by him and used as a shared key in 
the group communication, by operating photons from other communication participants such as Alice, Sam and 
Tom. All participants’ identities are verified by a multi-user authorization device, which is composed of an optical 
delay OD2 and a switchable detector SD. Before the discussion of the multi-user authorization system, we first talk 
about how to achieve information exchange among communicators.

At each participant’s end, there is a Michelson interferometer. As shown in the figure, C stands for optical 
circulator, D stands for photon detector, M stands for mirror (We assume that all mirrors have no influence on 
photon phase) and S stands for light source, which can generate horizontal (H) polarized photons and vertical (V) 
polarized photons. Besides that, SPR stands for switchable polarization rotator35. It is utilized to change photon 
polarization from V(H) to H(−V) when it is turned on. In addition, BS stands for beam splitter with the same 
transitivity and reflectivity. Here, we point out that the two interfaces of the BS are asymmetric (see Fig. 1). Only 
the reflection at one of the interfaces causes π phase shift (Half-wave loss), while transmission and reflection at 
the other interface do not. Then, the function of the BS can be written as42,43

→ +

→ − .

P P P
P P P
0 ( 0 0 )/ 2 ,

0 ( 0 0 )/ 2 (1)

where P = H, V describes the photon polarization, |0P〉 represents that a photon is on the side of the interface with 
half-wave loss while |P0〉 represents a photon is on the other side.

In the communication, a H photon represents participant’s logic 0 while a V photon represents logic 1. After 
one participant decides his signal, he sends his photon into his interferometer. Due to BS, the photon is separated 
into two paths. One is a private path (between BS1 and M), which is unaccessible to other communicators or 
eavesdroppers. The other path is a public path which includes an open area (the public transmission channel in 
Fig. 1) and Bob’s station. Accordingly, the photon state can be represented as +P P( 0 0 )/ 2. The photon in the 
state |P0〉 is retained in the private path while the photon in the state |0P〉 is in the public path. We notice that 

+H H( 0 0 )/ 2  and +V V( 0 0 )/ 2  are orthogonal. By measuring the polarization of the photon in the 
transmission channel, Eve has 50% chance getting the participant’s information. Therefore, it is unsafe for the 
participant to launch his photon directly into public path. To prevent information leakage, we add SPRA, which is 
randomly turned on or off for each participant’s signal. As a result, the polarization of the photon in the open area 
is no longer consistent with the participant’s information. However, here we should also mention that Eve can not 
distinguish the above two orthogonal states +H H( 0 0 )/ 2  and +V V( 0 0 )/ 2  without disturbing them. 
This is because Eve can only access the public path15.

Now the photon component |0P〉 is safe and ready to be operated by Bob. Before the discussion of Bob’s 
operations, here we emphasize that the physical distances between Bob and participants are different. Thus, those 
optical delays OD1, which are used to compensate for optical distance difference in participants’ interferometers, 
are different for different participants.

In light of ref.6, Bob’s information can be directly transferred by controlling the phase of participant’s pho-
ton. Here, the phase operation is achieved by a polarization beam splitter (PBS) reflecting H photon, and an 
interferometer which is composed of BS2 and two mirrors. This interferometer is equivalent to a Mach-Zehnder 
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interferometer which is shown in the dotted oval shape at right-bottom of Fig. 1 as well. According to Eq. (1), it 
is easy to get that the photon coming from the top side (|P0〉) must appear eventually at the bottom side without 
phase difference. We mark the photon path by red dashed lines. In contrary, if a photon is launched from the bot-
tom side (|0P〉), it eventually appears at the top side with a π phase shift. We mark the photon path by blue dotted 
lines. Apparently, by selecting the entrance of the incident photon, Bob can control the phase of the photon. This 
allows Bob to send signals to all participants. In detail, if Bob wants to send a logic 0, he turns off SPR1 but turns 
on SPR0s so that the H photon will be sent into the red path while the V photon will be sent into the blue path. If 
Bob wants to send a logic 1, he turns SPR0s off but turns SPR1 on. Then, the H photon is sent into the blue path 
while the V photon is sent into the red path.

In the table of Fig. 1, we have shown how one participant can distinguish Bob’s two signals. First we consider 
one participant turns his SPRA off (transparent) and sends a H photon to Bob. If Bob encodes ‘0’, SPR1 doesn’t 
work. The photon is reflected by PBS. Then, it becomes −V due to SPR0 and goes into Bob’s interferometer by the 
red dashed path. The phase of its output state does not change. The photon comes back via red dashed path and 
becomes −H due to SPR0. Then, the photon goes back to the participant’s place with a π phase shift. According to 
Eq. (1), we have |0H〉. The detector D0 clicks.

If Bob encodes ‘1’, the photon becomes −V according to SPR1 and then passes through PBS. Since it passes 
through Bob’s interferometer by the blue dotted path, a π phase shift appears. According to SPR1, a H photon goes 
back to the participant but with a zero phase difference compared to the photon component in the participant’s 
arm. According to Eq. (1), now we have |H0〉, which in turn causes D1 to click. Here, we should emphasize that, 
whatever Bob’s decision is (0 or 1), the participant’s photon passes through the active SPRs twice and inactive SPRs 
twice. This guarantees that the optical distances in the two cases are the same.

In the above cases, one participant distinguishes Bob’s signals directly by his detectors D0 and D1, which 
achieves a one-way communication. This result is similar to the Ping-Pong protocol but utilizes photon path 
entanglement instead of two-photon entanglement.

Next we consider the case that the participant still turns SPRA off but sends a V photon (logic ‘1’). It is easy 
to find out that D1 clicks for Bob’s logic 0 while D0 clicks for Bob’s logic 1. Therefore, in case SPRA is off, D0 clicks 
if the participant and Bob encode the same signal while if they encode different signals, D1 clicks. Now we look 

Figure 1.  Schematics of the proposed group secure direct communication protocol. In the figure, every 
participant has the same device which is a Michelson interferometer where S stands for light source, D stands 
for photon detector, C stands for optical circulator, BS stands for beam splitter, OD stands for optical delay 
and SPR stands for switchable polarization rotator. In the communication, a participant prepares a horizontal 
(H) polarized photon for his logic 0 while a vertical (V) polarized photon for his logic 1. After entering the 
interferometer, the participant’s photon has half the chance of passing through the public transmission channel 
and reaching the key initiator’s station. To prevent information leakage, SPRA is randomly activated which 
can change the polarization of photons from V(H) to H(−V). Thus, in the transmission channel, the photon 
polarization and the signal of the participant are no longer relevant. At the key initiator’s station, PBS stands 
for polarization beam splitter which reflects only H photon and SD stands for switchable detector. SD and OD2 
constitute the quantum multi-user authorization system which is used to isolate the key initiator’s device from 
external environment and to verify the authorization of each incoming photon. For the rest of the key initiator’s 
device, its function is to operate the photon phase by turning on either SPR0 or SPR1. After the phase operation, 
the key initiator sends the photon back to the participant who then do the measurement. All possible results 
have been shown in the table.
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into the case when the participant turns SPRA on. In this situation, a participant’s photon has an additional π 
phase shift since it passes through SPRA twice. Then, we shall still see that D1 clicks if the participant and Bob 
encode different signals while D0 clicks if they encode the same signal (see the table in Fig. 1). Subsequently, once 
the participant publishes his measurement results (which detector of his clicks), Bob knows his messages, and a 
two-way communication is achieved. Moreover, if Bob operates all participants’ photons simultaneously for his 
every signal, he can deliver his signals to all participants. With Bob’s signals, any two participants can read each 
other’s information. A group communication is achieved.

The counterfactual quantum attack
So far, we have seen how Bob sends a key directly to a group of communicators and how they exchange informa-
tion based on that key. We note that in addition to multi-user participation, the difference between our protocol 
and the Ping-Pong protocol is that the polarization of photons transmitted by one participant is not unique. In 
the previous section, we have shown that the polarization of the photon in the transmission channel does not 
represent the actual information. Moreover, any detection of photons causes detectable disturbances. Therefore, 
we can continue to use the security strategy proposed in the Ping-Pong protocol as long as it is not flawed. In the 
Ping-Pong protocol, the security is ensured by control mode in which Bob randomly stops the message transfer 
process (message mode) and uses a detector to measure the incoming photon. His measurement result should be 
related to Alice’s due to entanglement. However, the above security strategy is based on one assumption, i.e., there 
is no “invisible” photon that does not trigger Bob’s single photon detector but is capable of reading Bob’s phase 
operation. Unfortunately, according to current research results, this assumption is not true, even if Bob’s detector 
can detect electromagnetic waves at any frequency.

In ref.37, a communication protocol utilizing invisible photons is discussed. It shows how one communicator, 
Alice, tells if Bob has applied a π phase shift to her “invisible” photon by double chained Mach-Zehnder interfer-
ometers. If Bob adds a π phase shift, Alice’s first detector clicks with unit probability. If Bob decides not to change 
the phase, Alice’s second detector clicks with unit probability. Then, Alice can collect information from Bob. 
During the communication, Alice’s photon is sent to Bob several times during his certain operation, but each time 
the probability of the photon being found is extremely low. More importantly, if Bob continues to observe Alice’s 
photon instead of manipulating its phase, then the communication becomes a direct counterfactual quantum 
communication35. According to interaction free measurement44,45 and Quantum Zeno effect46–48, the continuous 
observation prevents Alice’s photon from leaking into the transmission channel. If Bob does not find Alice’s 
photon, the photon must locate in Alice’s device and cause Alice’s second detector clicking. Thus, Bob can not see 
the photon but the photon can sense whether Bob is looking at it. This is counterfactual35,49. If unfortunately Bob 
captures Alice’s photon, the communication failed. However, as we pointed out in ref.35, the probability of Bob 
finding the photon depends on how many times (cycles) that Alice’s photon is sent to Bob. With the increase in 
the number of times, the probability is close to zero.

Above we briefly introduce how to use an “invisible” photon to do communication, which also implies a 
method of invisible quantum measurement. Eve can use the method to attack the Ping-Pong protocol without 
intercepting the message receiver’s photons. Specifically, utilizing the same device proposed in ref.37, Eve shoots 
her own photon towards Bob to do the measurement. She needs to complete a measurement before Bob changes 
his operation, whether the operation is in message mode or control mode. If Bob selects message mode, Eve 
definitely can obtain Bob’s information. If Bob selects control mode, Eve’s photon has a tiny probability of being 
found, which causes her exposure. But the bigger chance is that Bob does not find Eve’s photon, and Eve’s one 
detector clicks. We note that in control mode, Bob exchanges measurement results with Alice, hence, Eve knows 
that detector clicking does not represent Bob’s information. As a result, Eve steals Bob’s message. Since the attack 
is based on direct counterfactual quantum communication protocol, we call it counterfactual quantum attack.

Consequently, the Ping-Pong protocol is not secure due to the counterfactual quantum attack. In the next sec-
tion, we will present a defense scheme. It works because that a counterfactual quantum attack requires a photon 
to be bounced between Eve and Bob more than once, which is proved in Supplementary III. Using this feature, we 
utilize an optical delay system so that Eve is impossible to complete a counterfactual measurement of one Bob’s 
signal in time. Based on our scheme, the secure strategy in the Ping-Pong protocol works again, i.e., authorized 
communicators can use single photon detectors to check the entanglement.

Quantum multi-user authorization system
In this section, we outline and discuss a new approach for checking authorizations of all communications. This 
method guarantees Bob’s message is only read by the right person. The corresponding device is called the quan-
tum multi-user authorization system, which is made up of OD2 and SD as shown in Fig. 1. In detail, SD is con-
trolled by Alice or other participants via public classical channel. The corresponding signal is classical and public. 
We call it control signal. When SD is switched on, it becomes a single photon detector and blocks the path into 
Bob’s interferometer. If SD is off, it becomes transparent for a short time Δt. In this time window, a photon can 
only pass through Bob’s interferometer once. According to Supplementary III, it is not sufficient to complete a 
counterfactual measurement. Before SD, there is OD2. We stress that OD2 is located inside Bob’s station. It is the 
only way (the quantum channel) for any photon to pass SD and enter Bob’s interferometer. Assume the time it 
takes for a photon to pass through OD2 is τ. Then, in oder to ensure that participants’ photons can pass through 
SD in time, the launch time of the corresponding control signals should be delayed by time τ41 (For the sake of 
convenience, we assume that the transmission paths between participants and Bob are straight lines).

Obviously, all participants can get Bob’s information by controlling SD, which is their privilege. However, if someone 
like Eve who is not authorized but wants to get Bob’s signals directly, she needs to know the time window. Even if she 
wants to implement counterfactual quantum attacks, the information of the time window is still necessary. In order to 
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get the information, Eve can listen to the control signal or measure participants’ photons. Firstly, we consider the situa-
tion that Eve carries out the attack based on the control signal. Suppose that Eve immediately starts her attack once she 
hears a control signal and it takes time T for a photon traveling from Eve to Bob. Then, the time required for Eve’s pho-
ton to reach SD is T + τ. However, SD is transparent from T to T + Δt. Thus if τ Δ t, it is impossible for Eve’s photon 
to get into Bob’s interferometer. Secondly, we consider the situation that Eve detects participants’ photons instead of 
listening to control signals. Here we notice that all participants’ photons are path-entangled. They have half a chance 
localized in participants’ devices which are unaccessible to Eve (private path). As a result, Eve’s eavesdropping must be 
traceable according to the no-cloning theorem of orthogonal states in a composite system15, which says that the two 
orthogonal states can not be distinguished without disturbing the system, if two subsystems (the private path and the 
public path in our case) are entangled while one of the subsystem is not accessible. Furthermore, we can understand the 
aforementioned theorem in a simpler way. As long as Eve gets the time information of a photon, it means that Eve 
knows exactly that the photon is in the transmission channel. The path entanglement of the photon is destroyed. 
Consequently, the participant’s detection may display an abnormal result44,45.

In general, the quantum multi-user authorization system is utilized to isolate Bob’s station from the external 
environment. It is a security door of Bob’s station. Only authorized photons can pass through it while an unau-
thorized entry triggers an alarm. This prevents Eve from stealing Bob’s information by an “invisible” photon or 
using the same device of the participant (Eve doesn’t have the authorization). This also prevents Eve from exploit-
ing the imperfection of Bob’s optical elements to steal information by sending some modulated light pulse into 
Bob’s station50,51. Therefore, the quantum multi-user authorization system can also protect Bob from side channel 
attacks such as the Trojan-horse attack50,51.

In the above, we show that in principle only authorized communicators can read Bob’s message which can 
be utilized as the shared key. Eve cannot steal information without leaving traces. In order to reveal these traces, 
participants can send additional photons to Bob in order to check the entanglement as in the Ping-Pong protocol. 
The detailed communication protocol is as follow.

The agreements.  Bob and n − 1 participants reach the following agreements: (a) Bob’s every signal lasts for 
time Ts. During this time, participants need to complete the measurement of the signal; (b) For Bob’s one signal, 
each participant launches two photons. Bob decides which photon is used to transfer information. Then, the 
other photon is for security check; (c) To ensure participants’ photons can be operated without any interference, 
Bob divides Ts equally into (n − 1)l slots which lasts Δt. He assigns to each participant l slots and informs them.

Distribution of one signal.  The preparation.  Every participant prepares two photons whose initial polari-
zation is determined by their real information. Polarization H represents logic “0” while V represents logic “1”. In 
the meantime, each participant generates a random number to decide whether SPRA is turned on or off so that these 
photons have random polarizations in the transmission channel. At Bob’s end, he prepares two binary random num-
bers A and B. He operates every participant’s two photons according to these two numbers. Number “0” means he 
turns SPR0 on but turns SPR1 off while number “1” means he turns SPR1 on but turns SPR0 off. In order to distinguish 
the two photons manipulated by Bob, in the following we call them photon A and photon B, respectively. In addition, 
for each participant, Bob’s order of operations for A and B is different. The order is decided by Bob randomly.

Information transfer.  Each participant randomly selects two slots to launch photons. After one participant launches 
his one photon for time τ, he makes an announcement in the public channel so that his photon can pass through 
SD successfully. At Bob’s end, Bob operates those two photons in order. Then, those photons are sent back to their 
participant and measured. If the participant and Bob encode the same signal, D0 clicks. Otherwise D1 clicks.

Security check.  Bob announces his orders of operations. He asks all participants to publish their measurement 
results of the A photon (signal “0” or “1”). Bob calculates the error probability PeT and compares it with the aver-
age measurement error Γ (see Supplementary I and II), which is caused by environmental noise and implement 
imperfection. If PeT is larger, Bob terminates the communication. If there is no security problem being found, the 
number B becomes the shared signal. Then, all communicators begin the next round of signal transfer process.

Message Exchange.  After step (2) is repeated many times, a series of random bits are shared by multiple 
users. The participants can use them as a key to exchange information. What they need to do is to announce 
which detector clicks for each shared signal. As for Bob, he can also use the same shared key to encode his real 
message and publish the corresponding ciphertext.

The above is the proposed quantum secure group communication protocol. The basic idea is not to generate a 
key within many authorized users but to directly distribute a pre-selected key. The pre-selected key is decided by 
Bob himself and is used only if the communication channel is secure. Next we emphasize five points.

First, the pre-selected key is transferred to all participants independently. Therefore, if a transmission channel 
between Bob and one participant is not secure, Bob can simply cut it off by SD (i.e., Bob blocks that participant’s 
photons), which does not affect the communication between him and others. Moreover, if Bob’s phase operation 
is fast enough (during Ts, he is able to send different participants different signals), he can group participants and 
make different groups have different authorizations. He only sends the complete key to the users with the highest 
authorization while he sends the less privileged users only part of the key (by blocking some signals). Then, those 
less privileged users cannot get all the information in the message exchange stage.

Second, like usual QKD protocols, our protocol is also susceptible to the photon-number-splitting (PNS)52 
attacks when weak coherent pulses are used. To defend PNS attacks, we can use decoy state technologies14,18–20 
which is widely implemented in practical QKD systems. When weak coherent pulses are utilized, according to 
our protocol, each participant’s coherent pulse passes the transmission channel twice. The first time is from the 
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participant to Bob while the second time is from Bob to the participant. We notice that Eve cannot extract Bob’s 
information if she implements PNS attacks only when the participant’s photon travels from Bob to the partici-
pant. However, if Eve attacks when the photon travels from the participant to Bob, she can get the time window 
of SD. Then, Eve can make her photon into Bob’s station and bring back the information of Bob’s phase operation. 
Therefore, we must secure the transmission channel when the participant’s photon travels from the participant to 
Bob. Since Eve doesn’t know when participant’s photons pass through the transmission channel, the participant 
can insert decoy states which are used to detect Eve’s PNS attacks, while detections are achieved by SD. Then, 
during the security check, Bob and participants can analyze whether there are PNS attacks.

Third, due to OD2 and the short time window Δt, the counterfactual quantum attack is defeated since it can 
not be completed in time.

Fourth, we adopt the same strategy as the Ping-Pong protocol to ensure communication security, i.e., we check 
the path entanglement of participant’s photons. Those A photons correspond to control mode in the Ping-Pong 
protocol while B photons correspond to message mode. However, since path entanglement is utilized here, if Bob 
directly does the measurement, he only has half the chance to find photons. It is not efficient and the result is con-
fused with that of photon loss. Therefore, the measurement in our security check process is done mainly by partici-
pants rather than Bob.

Fifth, we check the security for each Bob’s signal, since one Bob’s signal is measured by many participants. We notice 
that Eve can randomly intercept some participants’ photons to get the information of the time window so that she can 
steal Bob’s information. In fact, this happens in all network communications, as long as Bob sends the same message 
to many users. For example, let us consider a secure communication network based on QKD. Eve can eavesdrop small 
fragments of a key from different participants. Each fragment can help Eve to read a short piece of Bob’s information. 
Moreover, supposing Eve gets a fragment of the key from one communicator, such as Alice, she can not only read Bob’s 
corresponding message but also utilizes the message to decode other communicators’ keys such as the key shared by 
Bob and Sam. Then, Eve also gets a piece of Sam’s information. Therefore, although in the secure network based on 
QKD, every two communicators have a unique key, the information they exchanged can still be regarded as encrypted 
by Bob’s message. Hence, why don’t we skip the intermediate steps and just transfer a determined key? Does the secure 
network based on QKD have some advantages? In the next section, we will analyze and discuss that.

Discussion on Network Communication Security and Efficiency
Suppose that Eve hacks m participants for one Bob’s signal while for each participant, she intercepts k(k = 1, 
2) photons. In our protocol, if Eve intercepts a “B” photon, she does not have to accept the security check. 
Apparently, Eve has PB = 50% probability of capturing the photon. When that happens, Eve knows exactly when 
SD is turned off. Then, Eve can send her own photon into Bob’s device and get Bob’s signal for 100%. Thus, the 
probability of Eve stealing Bob’s signal is PB = 50%. In contrary, if Eve intercepts an “A” photon, she will be checked 
and she has no chance to read Bob’s real signal. We notice once Eve measures a participant’s photon, the photon 
entanglement is destroyed no matter whether Eve captures the photon or not. Even if Eve’s detector gets nothing, 
the participant’s detectors still have 50% chance clicking incorrectly, which exposures Eve. If Eve’s detector clicks, 
it means there is no photon at the participant’s end, which helps to expose Eve. To reduce the chance of being 
exposed, Eve can return a fake photon to the participant, which causes the wrong participant’s detector to click 
for 50%. Therefore, if Eve intercepts an “A” photon, the chance of her exposure is PA = 50%. Thus, the total chance 
of Eve getting Bob’s one signal from one participant without exposure is

= − .−
−

P P P C
C

(1 )
(2)

s A
k

B

k

k
1 1

1

2

We notice that (1 − Ps)m represents the chance that either Eve does not know Bob’s signal or she is exposed 
after she attacks m participants. Then, the total chance of her stealing Bob’s signal without exposure is

= − − .P P1 (1 ) (3)sT s
m

Here, it is easy to see that PsT = 1 − (3/4)m for both k = 1 and k = 2.
In addition, the total probability of Eve being exposed after Bob checks n “A” photons is

= .P km
n

P
2 (4)eT A

Above, we assume that the communication is free from noise and implement imperfection. In practical applica-
tion, Eve will not be exposed if PeT is smaller than the average measurement error (Γ) due to environmental noise 
and implement imperfection. According to Eq. (4), as n increases, the probability of Eve being found is getting 
smaller. It indicates the network communication requires higher error control in order to reduce the risk of eaves-
dropping. As for Eve, she needs to minimize m in order to reduce the risk of being exposed. However, if she does 
so, it also reduces the chance of her stealing Bob’s information according to Eq. (3).

Next, we consider a secure quantum network based on BB84. In the communication, Bob generates n − 1 
independent keys with n − 1 participants so that they can exchange information using those keys. In the process 
of generating a key, one participant selects either the computational basis or the Hadamard basis to encode a bit 
while Bob randomly selects one of those two bases to infer the bit. As long as their selections are the same, the bit 
is shared by the participant and Bob. Otherwise, Bob’s measurement result is meaningless and can be discarded. It 
is easy to see that the key generation probability is 1/2. In addition, for security reasons, Bob and the participant 
need to ensure the consistency of their shared bits.
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Based on the above discussion, in the next analysis of eavesdropping, we only consider the case when Bob and 
the participant announce the identical basis. In the meantime, we assume that Bob checks one of every two bits 
with the participant. The detailed model is as follows. One participant launches four photons to Bob. On average, 
only two of them can be utilized to generate the key. Bob randomly selects one of these two photons to check the 
security. This photon corresponds to the “A” photon in our protocol. Then, the remaining photon is the key, which 
corresponds to the “B” photon in our protocol. Here we still assume that Eve hacks m participants and intercepts 
k of one participant’s two photons. She measures each photon by one random basis. According to her measure-
ment result, she sends a fake photon to Bob. If Eve captures the “B” photon, apparently, she has 50% chance of 
choosing the correct basis (Notice that Bob and the participant’s bases are the same). Then, Eve gets the key cer-
tainly. The probability of Eve stealing Bob’s bit without exposure is ′ =P 50%B . Next we consider the situation that 
Eve captures the “A” photon. Apparently, she will not be exposed if she selects the correct basis. However, if Eve 
selects a wrong basis, she has 50% chance being exposed. As a result, the probability of Eve being exposed is 

′ =P 25%A . Then, the total chance of her stealing Bob’s signal without exposure is

′ = −








− − ′ ′








≥ .−
−

P P P C
C

P1 1 (1 )
(5)

sT A
k

B

k

k

m

sT
1 1

1

2

Here we can see that if k = 1, ′ = −P 1 (3/4)sT
m while if k = 2, ′ = −P 1 (5/8)sT

m. In addition, the total probabil-
ity of Eve being exposed after Bob checks n “A” photons is

′ = ′ < .P km
n

P P
2 (6)eT A eT

Comparing the results of the above two scenarios, we can see that our proposed protocol is safer and more 
efficient. The main difference comes from PA. In our protocol, Eve has 50% chance of exposure when she measures 
the “A” photon, but in the network based on BB84, the probability is 25%. This is determined by the nature of the 
QKD protocol. The shared random bit is generated during the communication. If Eve happens to choose the right 
operation, she will not leave any abnormal trace. However, in our protocol, the random bit is pre-prepared before 
the communication. It is delivered certainly and directly to all participants. Once Eve interferes with the delivery 
process, she immediately creates a traceable error. In addition to the enhancement of the security, we should also 
mention that the direct signal delivery process improves the key generation probability. Our protocol only needs 
two photons to generate a key while in the network based on BB84, four photons generate one key.

Conclusion
In summary, we report a new kind of secure quantum group to group communication protocol. A “shared” key 
is securely transferred to all group members so that they can use it to encode and decode their messages. By 
changing the phase at one arm of one participant’s interferometer, Bob can exactly control which detector of 
the participant to be clicking. Based on that, Bob can directly send a pre-selected key to all participants. In the 
meantime, a quantum multi-user authorization system is applied to give authorization to all participants in the 
group. It secures the key transfer processes. The main principle of protection is due to the fact that Eve can only 
access one arm of every participant’s interferometer. Any attempt that she tries to measure one participant’s pho-
ton simply destroys the interference, which causes errors in participant’s measurement and shows her presence. 
Moreover, we show the quantum multi-user authorization system can defeat counterfactual quantum attack. 
Counterfactual quantum attack tries to steal information by an untraceable photon. It is very hard to be exposed. 
However, the counterfactual quantum attack requires a photon being operated by Bob more than once (consistent 
operation). Therefore, we precisely control the communication time so that Eve can not complete the attack in 
time. As a result, we can share secure messages among a large number of users. At the end of the paper, we present 
the advantage of our protocol by comparing our protocol with the quantum secure network based on BB84. We 
show that our protocol is more efficient and securer since the key is transferred directly.
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